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In this work, we present an optimization process for the design of converging-diverging
nozzle contours. The process is a brute-force algorithm that runs CFD simulations for
various contours until the one with the most uniform flow properties is obtained. The
contour is described using a Bezier curve, with control points serving as the independent
variables in the optimization process. The function that is minimized is a penalty function
that characterizes the non-uniformity of the flow properties. The optimization is carried
out in three steps: contour definition, inviscid optimization, and viscous optimization. The
inviscid optimization is performed with a coarse grid and a CFD model with no viscosity or
turbulence. This serves to rapidly design a contour that is close to the desired performance.
Using the result of the inviscid optimization as a starting point, further refinement is carried
out in the viscous optimization, with a finer grid and a CFD model that accounts for all
relevant physical phenomena. Different CFD solvers are used at each step, and results are
presented for the design of a Mach 6 nozzle for the Stevens Shock Tunnel.

Nomenclature

M = Mach number, (-)
P = Static pressure, (Pa)
Ppitot = Pitot pressure, (Pa)
T = Temperature, (K)
ρ = Density, (kgm−3)
u = Streamwise velocity, (ms−1)
v = Wall-normal velocity, (ms−1)
x = Streamwise coordinate, (m)
r = Radial coordinate, (m)
F = Penalty function, (-)
θ = Flow angle, (degrees)
fM = Exit Mach number penalty, (-)
fθ = Exit flow angle number penalty, (-)
fMc

= Centerline Mach number penalty, (-)
fp = Contour penalty, (-)
fP = Exit pressure penalty, (-)

I. Introduction

The rapidly advancing field of hypersonics has given rise to the development of high-speed research facilities
such as shock tubes, shock tunnels, wind tunnels, and Ludwieg tubes. The purpose of these facilities is
to recreate the conditions experienced by hypersonic vehicles. A common feature of all such facilities is a
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converging-diverging nozzle that accelerates the flow to high velocities. The design of converging-diverging
nozzles in these research facilities is driven by the need for accurate measurements, requiring the flow to be
uniform, unidirectional, and shock-free.

A common method used to design the diverging section of a supersonic nozzle is the Method of Characteristics
(MOC). It is computationally inexpensive and there have been various improvements to the method, such
as incorporating vibrational effects.1 However, the MOC requires an iterative design process as viscous
effects are not properly accounted for. An accurate CFD simulation is used to check the MOC results and a
corresponding boundary-layer correction is applied to the MOC for the next iteration. Therefore, the MOC
is not a replacement for solving the complete set of flow equations using an appropriate solver. Although it is
a useful tool when computing power is not readily available (as was the case when it was first developed) this
is no longer a limiting factor with even commercially available modern personal computers able to perform
the simulations described later in this work.

In this work, a methodology is presented to design nozzle contours without using the MOC. Building upon
work from the University of Queensland,2 it is a brute force algorithm that evaluates numerous contours
by solving for the flow each time using a CFD solver with all the relevant flow physics accounted for. For
each contour, a penalty function is calculated that quantifies the non-uniform nature of the flow. The
contour with the smallest value of the penalty function is selected as the optimal contour. This is effectively
an optimization problem, where the contour is the independent variable and the penalty function is being
minimized. This design methodology is comprised of three steps, outlined below.

1. Contour Definition: Choose a suitable mathematical definition for the contour of the nozzle. In this
work, we use a Bezier curve which defines the contour by a set of control points. These control points
are adjusted during the algorithm to change the contour until their optimal values are determined.

2. Inviscid Optimization: Using a CFD package, perform the optimization assuming the flow is inviscid.
The target Mach number here is slightly higher than the desired value, to account for the decrease
in expansion caused by the boundary layers on the wind-tunnel walls. An inviscid solver runs much
faster, and the purpose of this step is to get a contour that is close to the desired conditions.

3. Viscous Optimization: Using the results of step 2 as a starting point and a suitable CFD package,
perform the optimization with viscous and turbulent effects included. These simulations take longer
than their inviscid counterparts, and any other physical effects (thermochemical nonequilibrium, etc.)
that need to be accounted for must be added. The target Mach number is the desired value as this
simulation represents the actual conditions. The accuracy of this algorithm depends on the CFD model
used in this step.

The steps are detailed in the following sections and results are presented for the design of a Mach 6 nozzle
for the Stevens Shock Tunnel. The Stevens Shock Tunnel is currently being constructed to advance our
understanding of hypersonic fluid mechanics phenomena such as boundary-layer instability,3–5 turbulence,6

and shock-wave boundary-layer interaction7,8 via non-intrusive optical diagnostics.9–17

II. Characterization of Nozzle Contour

The first step in the design process is selecting a suitable mathematical description for the supersonic portion
of the nozzle contour. Following Chan et al.,2 in this work, we use a Bezier curve to define the axial, x,
and radial, r, coordinates of the contour. The general form for the nozzle contour using an nth order Bezier
curve is given in Eq. 1,

x(t) =

i=n∑
i=0

(
n

i

)
(1 − t)n−itiXi

r(t) =

i=n∑
i=0

(
n

i

)
(1 − t)n−itiRi

(1)

where, 0 ≤ t ≤ 1,
(
n
i

)
is the binomial term and Xi and Ri are the control points. The order of the curve, n,
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is fixed at the beginning and the control points, (Xi, Ri), are the parameters that are varied until an optimal
contour is achieved. As the form shows, the number of control points is always n+ 1.

Bezier curves have the property that they always pass through the first and last control points, (X0, R0) and
(Xn, Rn), respectively. We exploit this property to limit the nozzle’s size to meet any spatial constraints
imposed by a new or pre-existing set up and adhering to required start-up times. The nozzle length can be
fixed by setting X0 = 0 and Xn to the design length. Similarly, Rn can be set to the desired value to fix the
nozzle’s exit radius. Therefore, X0 has a fixed value of 0 and denotes the throat location. Furthermore, the
last control point, (Xn, Rn) is fixed and is a constraint that is imposed on the optimization problem.

An example of a nozzle contour defined using a Bezier curve is given in Fig. 1. This is the optimized curve
that was obtained for the design of a 1.5 m long 16 in exit diameter Mach 6 nozzle. The Bezier curve (in
black) in Fig. 1 is a 9th order curve and its 10 control points are given in Table 1.

The subsonic portion of the nozzle contour is not subject to the optimization problem as there are no standing
waves in that section. Hence, its selection is somewhat ad-hoc. In this work, we chose a 2 in radius quarter
circle to ensure that the slope at the throat is 0.

In addition to fixing the values of X0, Xn, and Rn, there are other constraints that the contour must satisfy.
First, at the throat, the slope must be 0. This is achieved by enforcing that R0 = R1 (as shown in Table 1).
Second, at the nozzle exit, it might be of interest to ensure that the contour is nearly flat so that the flow is
fully axial. This is achieved by enforcing either Rn = Rn−1 or Rn −Rn−1 ≤ tol, where tol is some tolerance
selected by the designer.

Consequently, in this work, there were a total of 10 control points that could be varied to change the nozzle
profile. This corresponds to 20 variables (each control point has an X and R coordinate). Out of these 20,
3 are fixed (X0, Xn and Rn) by design requirements, and 1 more, R1 is fixed to ensure the slope is 0 at
the throat. Therefore, the optimization problem is reduced from 20 to 16 variables. This could have been
reduced further to 15 if Rn = Rn−1 had been enforced.

Table 1: Control points for 9th order Bezier curve.

i Xi (m) Ri (m)

0 0.0000 0.0256

1 0.0704 0.0256

2 0.1007 0.0945

3 0.3872 0.1458

4 0.5775 0.1695

5 0.7707 0.1691

6 1.0207 0.2105

7 1.2601 0.1892

8 1.4451 0.2028

9 1.5000 0.2032
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0 0.5 1 1.5
0

0.1

0.2
Bezier Control Points

Supersonic Contour

Subsonic Contour

Figure 1: Paramaterization of nozzle contour. The Bezier control points are shown in red. The corresponding
optimized Bezier curve, which defines the supersonic portion of the nozzle, is shown in black. The subsonic
portion is shown in blue, which is defined by a 2 in quarter circle.

III. Algorithm Overview

In this section, we present the general structure of the algorithm. A schematic is shown in Fig. 2. The
general form of the algorithm is the same for both the inviscid and viscous optimization processes. The
differences lie in the CFD models. The steps are detailed below.

Figure 2: Schematic of the general structure of the algorithm.

1. Choose values for control points: To start the optimizer, an initial Bezier curve is used. This initial
curve is selected by taking an existing nozzle, scaling it to the desired length and exit radius, and
fitting a Bezier curve to its contour. The control points of this contour are then used to initiate the
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optimization process. As the algorithm runs, the optimizer varies the control points to get the best
results.

2. Generate grid: Once the contour has been generated, a corresponding grid is created for the solver. The
grid includes both the converging and diverging sections and is different for the inviscid and viscous
optimizations. In the inviscid case, the grid is coarse and not clustered, as the point is to speed through
the calculations. The viscous version is refined enough to result in a converged solution and is clustered
near the walls and throat.

3. Run CFD solver: After the grid is generated, the chosen CFD solver is run to compute the flow.
As is done in this work, one may choose to use different solvers for the inviscid and viscous cases to
speed up the process. In the inviscid case, the no-slip condition is not enforced at the wall. At the
exit of the nozzle, a supersonic outlet boundary condition is enforced. At the nozzle’s inlet, constant
pressure/temperature reservoir conditions are enforced; the velocity is allowed to vary, as this is not a
supersonic inlet.

4. Post process to get data at the nozzle’s exit and centerline: Once the flow solution is available, it is
processed to extract the data at the nozzle exit and the centerline. The exit data is used to determine
the uniformity of the conditions and the centerline data is used to get an appropriate core size. In the
viscous case, all of the data at the exit cannot be used as the boundary layer will always introduce
non-uniformities. Therefore, only the data points in the freestream must be extracted and used to
determine the quality of the flow.

5. Calculate penalty function: After extracting the data, the penalty function is computed. The value of
this function describes the off-design nature of the nozzle, and the optimizer’s goal is to minimize this
value. Various functions can be designed, depending on how many flow properties (pressure, velocity,
etc.) one wants to control.

6. Adjust curve using Nelder-Mead Simplex Algorithm: This is the optimization step. Following Chan
et al.,2 the algorithm used is a Nelder-Mead Simplex Algorithm, which varies the control points until
the penalty function is minimized. After every iteration, the process loops back to step 1 in this list.
The convergence of the minimization depends on how off-design the starting curve is. A starting curve
that is extremely off-design will naturally require more iterations to reach its minimum.

7. Stop if minimized: If the penalty function has reached its minimum value or is within the prescribed
tolerance limit, the optimizer stops and outputs the corresponding values of the control points that
define the Bezier curve. This curve is then selected as the nozzle contour.

The penalty function, F, is evaluated as follows.

F = (fθ + fM + fMc + fP + fp)
2 (2)

Where,

fθ =
1

N tan(θtol)2

N∑
i=1

(vi/ui)
2

fM =
1

NM2
tol

N∑
i=1

(Mi −Mtar)
2

fMc =
1

NM2
c,tol

N∑
j=1

(Mc,j −Mtar)
2

fP = PRESS(max(Pi) − min(Pi))

fp = 1e5, if
∂r

∂x
< 0

= 0, otherwise

(3)
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Here, fθ quantifies the angularity of the flow at the exit and fM quantifies the deviation from the target
Mach number, Mtar. v and u are the radial and axial velocities respectively and the summations for fθ and
fM are carried out over the data points at the nozzle exit, N being the total number of points. θtol and Mtol

are the weighting parameters. fP quantifies the non-uniformity of the pressure at the exit, where the max
and min operations are applied to all the data points at the exit and PRESS is the weighting parameter.
fp is a flag that returns a large number if the algorithm outputs a contour that curves inward (after the
converging portion). fMc quantifies the deviation of the centerline Mach number from the target value. This
summation is applied to the data points at the centerline of the nozzle from a chosen x location onward. It
cannot be applied to the entire centerline as the Mach number has to start from ≈0 at the reservoir and then
increase, therefore the centerline Mach number cannot be the target value throughout. N for fMc

is then the
number of data points from the chosen x location till the nozzle end and Mc,tol is the weighting parameter.
The values of the weighting parameters are chosen to ensure that all the penalties are approximately equal
in value and that a single penalty is not given preference.

IV. Inviscid Optimization

In this section, the details of the inviscid optimization process are presented. The goal of the inviscid
optimization is to create a contour that is close to the end result to minimize the run-time of the viscous
optimization. The target Mach number for the inviscid optimization must be sightly higher than the desired
value to account for the lack of a boundary layer. In this work, as the desired Mach number at the nozzle exit
was 6, the target Mach number for the inviscid optimization was selected to be 6.2. The CFD package used
for this step (meshing and solving) is Eilmer 3,18 from the University of Queensland. During the inviscid
optimization, both Xn and Rn coordinates of the control points are varied, resulting in 16 variables for the
optimizer, as mentioned in the previous section.

The first step in the inviscid optimization is to create a starting Bezier curve. This was done by using the
contour from an existing nozzle and scaling it to the desired length and exit radius. Then a Bezier curve
was fit to the contour. The order of the Bezier curve in this work is 9, as this fits the existing nozzle well.
Generally, Bezier curves of orders 6-9 work well for a variety of nozzle sizes; the choice mainly depends on
which order fits the contour of the existing nozzle after it has been scaled to the desired size. The Borges-
Pastva algorithm a was used to fit an initial Bezier curve to the existing nozzle contour, scaled to size.
Following this initial curve, the subsequent curves were generated by the Nelder-Mead Simplex Algorithm.

The grid in the inviscid optimization was kept very coarse, roughly 70 x 30 in the axial and radial directions,
respectively, as shown in Fig. 3. The grid was also specified to be orthogonal to the nozzle wall and included
both the converging and diverging sections. The converging section was a quarter circle with a 2 in radius.

0 0.5 1 1.5
0

0.1

0.2

Figure 3: Grid for inviscid optimization process.

The CFD solver for the inviscid case was run with the desired reservoir conditions. These conditions appear
in the boundary condition on the left boundary of the grid in Fig. 3. The proper boundary condition at
this location is a subsonic inlet or constant pressure/temperature reservoir. The boundary condition at the
nozzle exit is a supersonic outlet. At the top wall, the no penetration condition is enforced. The bottom
wall, r = 0, is the axisymmetric line. In this work, the reservoir pressure and temperature were 1 MPa and
1800 K respectively, and the gas was air. The total simulation time was selected to be 3 ms, as that was

ahttps://www.mathworks.com/matlabcentral/fileexchange/46406-borgespastva-m
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sufficient for the start-up process. The simulation was run in parallel on 16 cores and took around 30 seconds
to finish.

The post-processing step of the inviscid optimization extracted the raw data from the nozzle exit and
centerline and saved it in two separate files.

Fig. 4 shows how the penalty function changes as the optimization proceeds. The value changes by approxi-
mately 6 orders of magnitudes over the entire process and the CFD simulation requires approximately 1000
iterations to converge to a minimum. This process takes ≈6-8 hrs, depending on how off-design the starting
contour is. Once the optimizer has converged, the resulting Bezier curve is used as the starting point for the
viscous optimization, detailed in the next section.

0 200 400 600 800 1000 1200

Iteration

10
5

10
10

Figure 4: Variation of penalty function, F , with algorithm iteration for the inviscid optimization process.

V. Viscous Optimization

In this section, the viscous optimization process is detailed. During this step, all relevant physical phenomena
must be accounted for, such as chemical reactions, nonequilibrium effects, etc. In this work, two CFD
packages were used. Eilmer 3 was used to generate the grid, and a modification of DPLR19–22 was used to
solve the flow equations. DPLR was chosen over Eilmer 3 because it allows for large CFL numbers that
reduce the simulation time significantly. The target Mach number for this step was now the desired Mach
number, 6.

The starting Bezier curve for the viscous optimization is the optimized Bezier curve from the inviscid op-
timization. Furthermore, at this point, only the Rn coordinates of the control points are varied and the
Xn coordinates are kept fixed at the starting values. This speeds up the process as fewer variables require
fewer iterations and it is generally also not necessary to vary the Xn coordinates. Therefore, the number of
variables in the viscous optimization was reduced to 8.

The grid for the viscous optimization is shown in Fig. 5. Unlike its inviscid counterpart, it is refined enough
to be converged, 500x100 in the axial and radial directions, respectively. There is also clustering near the
throat and walls to resolve the large gradients in the flow properties. It is also kept orthogonal to the nozzle
walls. The grid was generated in Eilmer 3. However, the output from Eilmer 3 had to be converted into a
format compatible with DPLR. This was done by adding ghost nodes at the boundaries and writing the file
in a specific format.

The CFD simulation for the viscous optimization is run with viscosity, turbulence, chemical kinetics, and
vibrational effects accounted for. The turbulence model used is the one-equation Spalart-Allmaras model23

with the Catrisa and Aupoix24 compressibility correction. The gas model is 5 species air with an excluded
volume equation of state and a simple harmonic oscillator model to evaluate the vibrational energy. The
boundary conditions are the same as the inviscid optimization, except that at the top wall the no-slip
condition is enforced and the wall temperature is kept fixed at 300 K. The CFL number was progressively
increased during the simulation until it reached a value of 1000. This ramp-up of the CFL number allowed
the simulation to run in 10 min.
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The post-processor for the viscous optimization is similar to the inviscid version in that it extracts the data
at the exit and centerline.

The penalty function is similar to the one used in the inviscid optimization. The difference between the
penalty functions is that the summations for fθ, fM , and fP are carried out only in the freestream of
the nozzle exit during the viscous optimization. The freestream is quantified as the region beyond which
∂M/∂r < 20.2

Fig. 6 shows the variation of the penalty function as the optimization progresses. The final value is approxi-
mately 4 orders of magnitude less than the starting value. Also, the number of iterations is significantly less
than the inviscid version, 180 vs. 1200. This takes ≈30 hrs to converge.

(a)

(b) (c)

Figure 5: Nozzle grid for viscous optimization. a) Overall view, b) close-up of throat showing axial clustering
and c), close-up of nozzle wall showing clustering and orthogonality at the wall.

0 20 40 60 80 100 120 140 160 180

Iteration

10
2

10
4

10
6

10
8

10
10

Figure 6: Variation of penalty function, F , with algorithm iteration for the viscous optimization process.
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VI. Results

In this section, the results of the optimization process are presented. The final contour is given in table 1
and is plotted in Fig. 1, which is the result of the viscous optimization. The results in this section correspond
to a nozzle reservoir at 1 MPa and 1800 K, with air as the gas.

Fig. 7 shows a contour plot of the Mach number in the nozzle. The plot shows that there is a core region of
uniform Mach number starting from x ≈0.6 m. There are also no standing waves in the nozzle.

Figure 7: Contour plot of Mach number. White lines denote M =1, 2, 3, 4, 5 and 5.93 from left to right.

Figs. 8 and 9 show the various flow properties at the nozzle exit and centerline. The Mach number is uniform
along the centerline after x ≈0.6 m and at the nozzle exit. The size of the inviscid core at the nozzle exit is
approximately 0.3 m in diameter. The flow angularity at the nozzle exit is essentially negligible at less than
1 degree. Other flow properties such as pressure, temperature, and velocity are also fairly uniform at the
exit.
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(b)
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(c)
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0

0.5

1

1.5

(d)

Figure 8: a) Nozzle centerline Mach number profile. b) Nozzle exit Mach number profile. c) Nozzle exit
axial velocity profile. d) Nozzle exit flow angularity profile.
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(d)

Figure 9: a) Nozzle exit pressure profile. b) Nozzle exit pitot pressure profile. c) Nozzle exit temperature
profile. d) Nozzle exit density profile.

VII. Model Validation

In this section, the results from the DPLR simulations are validated. Since the accuracy of this design
process depends on the accuracy of the CFD models used, it is important to ensure that the chosen model
is validated.

The first method of validation is a convergence check. In Fig. 10, the results from a simulation with a
1000x200 grid are plotted against the results from a 500x100 grid (the grid used in the optimizer). As the
figure shows, the Mach number profiles overlap and the grid used in the optimizer is refined enough to give
a converged solution.

To further validate the model, a comparison between the results from DPLR and Eilmer 3 is presented in
Fig. 11. Two simulations were run on Eilmer 3, one with the kω turbulence model and one with the Baldwin
Lomax model. The model used in DPLR is the Spalart-Allmaras model. The figure shows that all three
simulations are essentially equivalent and that varying the turbulence model does not change the solutions
significantly, bringing confidence to the DPLR results.
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Figure 10: Mach number profiles at a) nozzle exit and b) nozzle centerline for two grid sizes.
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Figure 11: Mach number profiles at a) nozzle exit and b) nozzle centerline for Eilmer and DPLR simulations
using different turbulence models.

VIII. Preliminary Experimental Results

We present preliminary results from some of the first experiments in the Stevens Shock Tunnel operated in
reflected-shock tunnel mode. Reservoir conditions are listed in Table 2. Reservoir conditions are calculated
from the incident shock speed, driven-section fill pressure, and average reservoir pressure trace using Can-
tera25 and the Shock and Detonation Toolbox.26 The reservoir conditions are then used as the input to the
University of Minnesota DPLR19 Nozzle code. In Figs. 12,13-a, we present the reservoir pressure and the
Pitot pressure along with centerline. The red portion of the trace indicates the test time, noting the delay
of the Pitot probe is delayed by 1 millisecond to account for expansion from the reservoir through the 1.5 m
nozzle. In either case, slight under-tailoring is observed in the reservoir pressure; this will be worked on in
the future. In Figs. 12,13-b we present the averaged experimental Pitot-pressure response over the test time
versus distance from the Nozzle centerline and compare this result to the DPLR code output. The nozzle
code somewhat under-predicts the Pitot pressure, and rectifying this discrepancy will be a focus of future
work. A key positive takeaway from these experiments is the approximately 320 mm (12.5 inch) nominally
inviscid core. More experimental results will be made available in forthcoming works.
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Table 2: Conditions in Preliminary Stevens Shock Tunnel Experiments. PR, TR, and hR are the reservoir
pressure, temperature, and mass-specific enthalpy, respectively. , U∞, P∞, T∞, Tv∞, ρ∞, M∞, ReEU
are the freestream velocity, pressure, translational/rotational temperature, vibrational temperature, density,
Mach number, and unit Reynolds number, respectively.

Shot PR TR hR U∞ P∞ T∞ Tv∞ ρ∞ M∞ ReEU

(bar) (K) (MJ/kg) (km/s) (kPa) (K) (K) (kg/m3) (-) (1/m)

70 15.7 1471 1.32 1.65 1.00 192 1035 0.018 5.94 2.23e6

72 15.0 1446 1.28 1.64 0.95 187 1038 0.018 5.95 2.20e6

73 9.8 1471 1.31 1.65 0.63 191 1101 0.011 5.94 1.42e6

74 9.8 1470 1.31 1.65 0.63 190 1101 0.011 5.94 1.42e6
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Figure 12: Shot 70 Results. a) Reservoir pressure and centerline Pitot pressure vs. time b) Comparison of
DPLR Nozzle code output with time-average Pitot-pressure results.
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Figure 13: Shot 73 Results. a) Reservoir pressure and centerline Pitot pressure vs. time b) Comparison of
DPLR Nozzle code output with time-average Pitot-pressure results.
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IX. Conclusions

In this work, a methodology for the design of converging-diverging nozzles was presented and demonstrated
with the design of an axisymmetric Mach 6 nozzle. The methodology relies on an optimization that is
effectively a brute force algorithm in that it keeps changing the contour and runs the simulations and until
a desirable flow is achieved in the nozzle. This is meant as an alternative to the traditional nozzle design
process using the Method of Characteristics.

The basic structure of the algorithm is a three-step process. The first step is to mathematically define the
contour using a Bezier curve. This is done by taking an existing contour, scaling it to the desired length and
diameter, and then fitting a Bezier curve of an appropriate order to it. The Bezier curve is described by a
set of control points that can be varied to change the curve. These control points are the variables that the
optimizer modifies to change the curve. A penalty function is defined that quantifies the off-design nature
of the flow. The goal is then to minimize the value of this penalty function. The second step is to perform
the optimization while using a simple inviscid model with a coarse grid. This optimization runs quickly and
results in a contour that has flow properties close to the desired conditions. The third step is to take the
result of the inviscid optimization and using it start the viscous optimization. This takes longer to complete
than its inviscid counterpart but gives an accurate description of the flow physics in the nozzle. The grid for
the viscous optimization is more refined and clustered near the walls and throat. The result of the viscous
optimization is then the Bezier curve that describes the contour of the nozzle.

The inviscid optimization in this work was run using Eilmer 3 at reservoir conditions of 1 MPa and 1800 K.
The viscous optimization was run using Eilmer 3 and DPLR. Eilmer 3 was used to generate the grid and
DPLR was used to run the simulation. In the DPLR simulation, all relevant flow physics such as chemical
reactions and vibrational effects were accounted for.

The result was a contour that created uniform flow properties at the exit with a Mach number of 6 as
computed with Eilmer 3 and DPLR. Furthermore, it was demonstrated that the grid used in the viscous
optimization is refined enough to give a converged solution and that the contour gives the same results when
different turbulence models and CFD solvers are used.

Future work on this design methodology involves further experimentally validating the simulation. This
will be done with more Pitot pressure measurements using probes and velocity measurements using tagging
velocimetry.
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